
A story of additives and multiplicatives

Andrea Aler Tubella

Ume̊a University

Structures and Deduction, June 2019



Ume̊a



Untangling cut-elimination

I In traditional cut-elimination procedures in Gentzen theory, we
eliminate cut instances from proofs by moving upwards
instances of the mix rule.

` mA, Γ ` nĀ,∆

` Γ,∆

I The presence of contraction makes for a jump to a higher
complexity class.



Untangling cut-elimination

I In traditional cut-elimination procedures in Gentzen theory, we
eliminate cut instances from proofs by moving upwards
instances of the mix rule.

` mA, Γ ` nĀ,∆

` Γ,∆

I The presence of contraction makes for a jump to a higher
complexity class.



Untangling cut-elimination

I Can we untangle cut and contraction and normalise on each of
them separately and in a natural way?

I If so, what influence does the shape of rules have on
normalisation?



Untangling cut- elimination

I Decomposition is the normalisation of contractions by
permuting them to the bottom of proofs. It can increase the
size of proofs exponentially.

I Splitting deals with cut-elimination in contraction-free systems.
It does not generate meaningful complexity.



Locality

I It is essential to move away from the sequent calculus: it is
always possible to build a valid sequent for which there is no
sequent calculus proof where all the contractions are confined
to the bottom (Brünnler, 2003).

I Locality is fundamental.



Why Deep Inference?

I Rules can be applied at any depth inside a formula.

I Rules can be made atomic and present great regularity.

I Atomic contractions can be permuted to the bottom of a
derivation (Gundersen, 2009; Straßburger, 2003).



Splitting

I We find all the subproofs that are independent from each other
above the multiplicative ‘cut’ connective.



Splitting

I We put them back together in such a way that we obtain a
proof with the same conclusion but without the cuts.



Splitting

I We put them back together in such a way that we obtain a
proof with the same conclusion but without the cuts.



Regularity
1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS (Straßburger, 2003)



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

←− contraction rules



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

←− contraction rules



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

←− contraction rules



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

The rules on the right
are admissible.

←− contraction rules



Regularity

t
ai↓

a ∨ ā

a ∧ ā
ai↑

f

(A ∨ B) ∧ (C ∨ D)
∧↓

(A ∧ C) ∨ (B ∨ D)

(A ∨ B) ∧ (C ∧ D)
∨↑

(A ∧ C) ∨ (B ∧ D)

+

(A ∧ B) ∨ (C ∧ D)
m

(A ∨ C) ∧ (B ∨ D)

a ∨ a
c↓

a

a
c↑

a ∧ a

f
aw↓

a

a
aw↑

t

Figure: System cSKS

←− splittable rules

The rules on the right
are admissible.

←− contraction rules

The rules on the left
will permute down and
the rules on the right
will permute up.



Splitting

Definition
A system S is splittable when:

1. There are dual distinguished connectives × with unit 1 and +
with unit 0.

2. S is uniquely composed of the rules

1
ai↓

a + ā
and

a× ā
ai↑

0
,

together with rules

(A + B) α (C + D)
α↓

(A α C ) + (B qα D)
and

(A α̂ B)× (C α D)
α↑

(A× C ) α (B × D)

for every connective α.

3. For every unit u, u + ū = 1.

4. For every connective α, 1 α̂ 1 = 1 .



Subatomic logic

(⊥ O 1) a (1 O ⊥)

(⊥ a 1) O (1 a⊥)
7→

1

a O ā

(⊥ a 1) � (1 a⊥)

(⊥ � 1) a (1 �⊥)
7→

a � ā

⊥
.

They are generated by the linear schemes:

(A O B) a (C O D)

(A a C ) O (B a D)
and

(A a B) � (C a D)

(A � C ) a (B �D)

I We are able to reduce disparate rules such as contraction, cut
and identity into a unique rule scheme.



Splitting

Theorem
Let S be a splittable system. For every proof

φ S

A

there is a proof
ψ S\{ai↑,α↑}
A

linear on the size of φ, and where ψ can be obtained from φ in a
procedure of polynomial-time complexity.



Splittable systems

I A whole class of substructural logics are splittable.

I Including logics that support self-dual non commutative
connectives, such as BV.

I MLL is splittable, the linear fragment of CL is splittable...

I A whole family of rules is admissible.



Decomposition

I In several deep inference systems, we know that we can
permute atomic contractions to the bottom of proofs through
local reductions.

I We want to restrict all contraction rules to the bottom of
proofs.



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

The rules on the right
are admissible.

←− contraction rules

The rules on the left
will permute down and
the rules on the right
will permute up.



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

The rules on the right
are admissible.

←− contraction rules



Regularity

1

a O ā

a � ā

⊥

(AO B) � (C O D)
�↓

(A� C) O (B O D)

(AO B) � (C � D)
O↑

(A� C) O (B � D)

(AO B) N (C O D)
N↓

(AN C) O (B � D)

(A� B) � (C N D)
�↑

(A� C) � (B � D)

(AO B) � (C O D)
�↓

(A� C) O (B � D)

(AN B) � (C N D)
N↑

(A� C) N (B � D)

+

(AN B) � (C N D)
m

(A� C) N (B � D)

(A� B) � (C � D)
m1 (A� C) � (B � D)

(AN B) O (C N D)
m2 (AO C) N (B O D)

a � a
ac↓

a

a
ac↑

a N a

0
aw↓

a

a
aw↑
>

Figure: System SLLS

←− splittable rules

The rules on the right
are admissible.

←− contraction rules

The rules on the left
will permute down and
the rules on the right
will permute up.



Decomposition

I We will present a rewriting system to permute contractions
below any other rule and cocontractions above any other rule.

I We will sketch a proof of the termination of this rewriting
system.



Decomposable systems

‘Definition’
A system SD is decomposable if:
it is made-up of a splittable system plus contraction and weakening
(either atomic contraction and medials, or unbounded contraction).



Decomposable systems

Definition
A system SD is decomposable if:

1. There are dual distinguished relations t with unit w and u
with unit w̄ .

2. SD is composed of a splittable system S with, together with
the rules

A t A
c↓

A
and

A
c↑
A u A

,

w
aw↓

a
and

a
aw↑

w̄
.

3. For every unit u, u t u = u = u u u.

4. For every connective α, w α w = w and w̄ α w̄ = w̄ .



Decomposition

I Splittable systems have only two types of rules

(A + B) α (C + D)
α↓

(A α C ) + (B qα D)
and

(A α̂ B)× (C α D)
α↑

(A× C ) α (B × D)
.

I Therefore we only need to study 3 interactions: contractions
with down-rules, contractions with up-rules, and contractions
with cocontractions.



Trivial reduction

I Reduction t↓:

A t A

A
ρ

C

−→
A

ρ
C
t

A
ρ
C

c↓
C



Trivial reduction

I Reduction t↓:

A t A

A
c↑

A u A

−→
A

c↑
A u A

t
A

c↑
A u A

c↓
A u A

I This can cause an exponential explosion in the size of the proof.

−→



Permuting past up-rules

I Reduction u↓:

(A1 α A2) t (A1 α A2)
c↓

A1 α A2

× (C α̂ D)

αl↑
(A1 × C ) α (A2 × D)

−→

((A1 α A2) t (A1 α A2))×
C α̂ D

c↑
(C α̂ D) u (C α̂ D)

tl↑
(A1 α A2)× (C α̂ D)

αl↑
(A1 × C ) α (A2 × D)

t
(A1 α A2)× (C α̂ D)

αl↑
(A1 × C ) α (A2 × D)

c↓
(A1 × C ) α (A2 × D)



Permuting past up-rules

I Reduction ua↓:

a ∨ a
c↓

a
∧ ā

ai↑
f

−→
(a ∨ a) ∧

ā
c↑

(ā ∧ ā)
∨l↑

a ∧ ā
ai↑

f
∨

a ∧ ā
ai↑

f

−→



Permuting past up-rules

I Reduction u↓:

(A1 α A2) t (A1 α A2)
c↓

A1 α A2
× (C α̂ D)

αl↑
(A1 × C) α (A2 × D)

−→

((A1 α A2) t (A1 α A2))×
C α̂ D

c↑
(C α̂ D) u (C α̂ D)

tl↑
(A1 α A2)× (C α̂ D)

αl↑ (A1 × C) α (A2 × D)
t

(A1 α A2)× (C α̂ D)
αl↑ (A1 × C) α (A2 × D)

c↓
(A1 × C) α (A2 × D)

−→



Permuting past down-rules

I Reduction r↓:

(A1 + A2) t (A1 + A2)
c↓

A1 + A2

α (D + E )

α↓
(A1 α D) + (A2 qα E )

−→

(A1 + A2) t (A1 + A2)
t↓

(A1 t A1) + (A2 t A2)
α (D + E )

α↓(
A1 t A1

c↓
A1

α D

)
+

(
A2 t A2

c↓
A2

qα E

)



Termination (the issues)

I The rewriting system is non-confluent.

I When contractions are permuted downwards they may be
duplicated.

I When we permute contractions we create cocontractions, and
vice-versa.

I There may be cycles.



Cycles



Cycles

I By permuting medials down, we can remove cycles locally and
without resorting to cut-elimination.



Decomposition

Theorem
In a decomposable system, there is a reduction strategy so that the
rewriting system terminates.

Equivalently, every proof can be rewritten as a proof where all
instances of contraction are at the bottom of the proof (and there
are no instances of cocontraction).



Decomposition

1. We permute all contractions downwards, always starting from
the lowest. When a contraction faces a cocontraction, we
duplicate the cocontraction. We show that this procedure
terminates.

2. We permute all cocontraction upwards, with the dual strategy.

3. We iterate between steps 1 and 2, and show that the iteration
terminates.

It is a generalization of (Straßburger, 2003).



Conclusions

I We can give a simple classification of rules in terms of their
behaviour in normalisation.

I Non-confluence and complexity creation are restricted to the
decomposition phase of cut-elimination.

I We give a uniform treatment for many existing logics

I We can use these results to design systems with guaranteed
modular cut-elimination.

I We can control complexity by following atoms.



Open problems

I Cycles are inevitable as long as there are contractions.

I They are not a DI construct (Carbone, 1997)

I We have two procedures to eliminate them, and both involve
arbitrarily big duplications. How much do they compress
proofs?

→ →



Open problems

I Complexity is created by permuting contractions through
associativity instances i.e. complexity is created in inference
steps that have no logical content in terms of deduction.

Two proofs differing only through redundant instances of
associativity will have different decomposed forms, of different
sizes.



References

Kai Brünnler. Two restrictions on contraction. Logic Journal of the IGPL,
11(5):525–529, 2003. doi: 10.1093/jigpal/11.5.525. URL
http://cs.bath.ac.uk/ag/kai/RestContr.pdf.

Alessandra Carbone. Interpolants, cut elimination and flow graphs for the
propositional calculus. Annals of Pure and Applied Logic, 83:249–299,
1997.

Alessio Guglielmi. Deep inference. Web site at
http://alessio.guglielmi.name/res/cos.

Tom Gundersen. A General View of Normalisation Through Atomic Flows.
PhD thesis, University of Bath, 2009. URL
https://tel.archives-ouvertes.fr/file/index/docid/

509241/filename/thesis.pdf.

Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD thesis, Technische Universität Dresden, 2003. URL
http:

//www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf.

http://cs.bath.ac.uk/ag/kai/RestContr.pdf
http://alessio.guglielmi.name/res/cos
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf
http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf

	References

