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The observation
I We observe that deep inference systems have a recurring linear

rule shape:
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Figure: SKS [3]
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Figure: SLLS [5]
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One shape to rule them all

I Goal: generating propositional proofs by a single, linear, simple
and regular inference rule scheme.

(A α B) β (C α′ D)

(A β C ) α (B β′ D)
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One shape to rule them all

It turns out that atomic rules do follow this scheme.

I Idea: consider atoms as self-dual, noncommutative binary
logical relations.
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Subatomic systems
We use propositional classical logic as an example.

Idea: occurrences of an atom a are interpretations of more primitive
expressions involving a noncommutative binary relation denoted by
a.

I Formulae A and B in the relation a, in this order, are denoted
by A a B.

I Formulae are built over the two units for disjunction and
conjunction, respectively f and t.

Example: the following two expressions are SA formulae:

(f a t) ∨ (t a f) (f b t) a (t c (t d f)) ∧ f ∧ ((f a f) ∨ (t b t))

We call tame the formulae where atoms do not appear in the scope
of other atoms (e.g., left) and wild the others (e.g., right).
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The proof system

To interpret our extended language of formulae, we define an
interpretation map 7→ from tame SA formulae to ordinary formulae
such that

f a t 7→ a t a f 7→ ā
t a t 7→ t f a f 7→ f

where ā denotes the negation of a.
Note

I atoms are self dual: A a B ≡ Ā a B̄

I atoms are not commutative

I atoms are not associative

We easily extend 7→ to all the tame SA formulae in the natural way.
For example: (f a t) ∨ (t a f) 7→ a ∨ ā (f ∨ f) a (t ∨ t) 7→ a
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The proof system

Consider the usual contraction rule for an atom:

a ∨ a

a

We could obtain this rule via 7→ as follows:

(f a t) ∨ (f a t)

(f ∨ f) a (t ∨ t)
7→

a ∨ a

a
and

(t a f) ∨ (t a f)

(t ∨ t) a (f ∨ f)
7→

ā ∨ ā

ā
.

We might consider those rules as generated by the linear scheme

(A a C ) ∨ (B a D)

(A ∨ B) a (C ∨ D)

This scheme is typical of logical rules in deep inference.
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The proof system

Two more examples, identity and cut:

(f ∨ t) a (t ∨ f)

(f a t) ∨ (t a f)
7→

t

a ∨ ā
and

(f a t) ∧ (t a f)

(f ∧ t) a (t ∧ f)
7→

a ∧ ā

f
.

They are generated by the linear schemes:

(A ∨ C ) a (B ∨ D)

(A a B) ∨ (C a D)
and

(A a C ) ∧ (B a D)

(A ∧ B) a (C ∧ D)

I Surprisingly, we are able to reduce disparate rules such as
contraction, cut and identity into a unique rule scheme.
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Doing proof theory

I A subatomic system SA is a deep inference system whose rules
are instances of the inference rule scheme

(A α B) β (C α′ D)

(A β C ) α (B β′ D)

where α′ = max(α, ᾱ) and β′ = β, or, dually, β′ = min(β, β̄)
and α′ = α.
There are subatomic systems for CL, LL, BV, KV...

I A proof is a derivation whose premiss is t.

I A proof composed of only tame formulae corresponds to a
proof in our usual proof theory.

9 / 23



Example: CL

Figure: SAKS [1]

10 / 23



Example: MALL

Figure: SAMALLS [1]

11 / 23



Splitting

I We can characterise splittable systems [2] for which
cut-elimination is ensured.

1. There is a distinguished connective + with unit 0.
2. All rules are of the form

(A + B) α (C + D)
α↓

(A α C ) + (B αm D)
.

I They correspond to a class of substructural logics: those
without contractions.
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Splitting

I We exploit the fact that we can always find independent proofs
above a cut.

Π1

` A,Φ

Π2

` B,Ψ
�
` A� B,Φ,Ψ

∆

` F{A� B}, Γ
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Splitting

I We exploit the fact that we can always find independent proofs
above a cut.
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⊥
O Kā
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Splitting

I Splitting goes beyond cut-elimination: we can show the
admissibility of a family of rules.

I Global procedure of polynomial-time complexity.
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Decomposition
In some deep inference systems, we can permute atomic
contractions to the bottom of proofs through local reductions [4].
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f

f

−→

a ∨ a

a

a ∧ a

−→

a

a ∧ a
∨

a

a ∧ a

a ∨ a

a
∧

a ∨ a

a

−→

16 / 23



Decomposition
We can pinpoint exactly where an exponential increase on the size
of proofs occurs.
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Decomposition

We can generalise contractions and give conditions for reduction
rules to hold:

I If for the relation β there is a rule
(A ∨ B) β (C ∧ D)

(A β C ) ∨ (B β D)
, the

following reduction holds:

(A α B) ∨ (C α D)
mc↓

(A ∨ C) α (B ∨ D)
β (E α′ F )

((A ∨ C) β E) α ((B ∨ D) β′ F )

→
((A α B) ∨ (C α D)) β

E α′ F
mc↑

(E α′ F ) ∧ (E α′ F )

(A α B) β (E α′ F )

(A β E) α (B β′ F )
∨

(C α D) β (E α′ F )

(C β E) α (D β′ F )
mc↓

((A ∨ C) β E) α ((B ∨ D) β′ F )
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Decomposition

(A α B) ∨ (C α D)
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Decomposition

I The behaviour of atomic contractions is a particular case of a
more generalised behaviour.

I Local procedure of exponential complexity.
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Conclusion

I We observe a mysterious phenomenon: only one rule shape is
enough to describe many different systems.

I We exploit it to reason generally and untangle two different
interactions involving cut-elimination.

I We can exploit it to design systems.

I Towards braids.
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