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Decomposition

I In many systems, derivations can be arranged into consecutive
subderivations made up of only certain rules: we call this
transformation decomposition.

I Herbrand’s Theorem is an example: bottom phase with
contraction and quantifier rules and a top phase with
propositional rules only.



Decomposition

I We can achieve a particular decomposition result for classical
logic by doing local rewritings of proofs.

I We “move” atomic contractions downwards in a proof, and
cocontractions upwards [3].

I The procedure can easily be visualised graphically.



Decomposition

Figure: SKS [1]



Atomic Flows [3]
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Complexity

I The decomposition procedure may increase the size of a proof
exponentially.
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...
...



Cycles

I When we apply the reductions to atomic contractions that
belong to a cycle, the rewriting system is not terminating:

→ →

I Cycles come from the connexion of an introduction and a cut.



Why this decomposition?

I Not only decomposing proofs, but generally derivations.

I Separation of compression mechanisms
I By separating into a phase with cuts and a phase with

contractions, we divide cut-elimination into two separate
procedures.

I Easily represented graphically.

I Seemingly more general than classical logic.
I Analogous local reductions can be defined for LL [4].



Not all is settled

I Cycles.
I Independence of decomposition from cut-elimination.
I Proof compression? [2]

I Full decomposition into linear/non-linear phases.

I Generality.

A new methodology, that we call subatomic, allows us to tackle all
three questions.



One shape to rule them all

I Many proof systems can be represented in such a way that
every inference rule is an instance of a single linear inference
rule scheme.

(A α B) β (C α′ D)

(A β C ) α (B β′ D)



But how?
I This shape arises very often when we have atomic introduction

and contraction rules.

Figure: SKS [1]

Figure: SLLS [4]



But how?

I How do the atomic rules fit the scheme?

We can consider atoms as superpositions of truth values:

f a t 7→ a t a f 7→ ā
t a t 7→ t f a f 7→ f

I How does that change the rules?

Contraction:
(A a B) ∨ (C a D)

(A ∨ C ) a (B ∨ D)
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t a t 7→ t f a f 7→ f

I How does that change the rules?

Contraction:
(f a t) ∨ (f a t)

(f ∨ f) a (t ∨ t)
7→

a ∨ a

a



But how?

I How do the atomic rules fit the scheme?

We can consider atoms as superpositions of truth values:

f a t 7→ a t a f 7→ ā
t a t 7→ t f a f 7→ f

I How does that change the rules?

Contraction:
(t a f) ∨ (t a f)

(t ∨ t) a (f ∨ f)
7→

ā ∨ ā

ā



But how?

Two more examples, identity and cut:

(f ∨ t) a (t ∨ f)

(f a t) ∨ (t a f)
7→

t

a ∨ ā
and

(f a t) ∧ (t a f)

(f ∧ t) a (t ∧f)
7→

a ∧ ā

f
.

They are generated by the linear schemes:

(A ∨ C ) a (B ∨ D)

(A a B) ∨ (C a D)
and

(A a C ) ∧ (B a D)

(A ∧ B) a (C ∧ D)

I Surprisingly, we are able to reduce disparate rules such as
contraction, cut and identity into a unique rule scheme.



But how?

I Can we make proof systems for that?
I Not in Gentzen formalisms.
I Yes in Deep Inference.

I Deep Inference is necessary for complete proof systems with
self-dual non-commutative connectives [5].



But how?

Figure: SKS [1]
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Figure: SAKS



With subatomic logic

I We can generally study the interactions between rules.

I Some results:
I We can represent a wide variety of systems with a single rule

scheme, including CL and LL.
I We provide a general cut-elimination theorem for a whole class

of substructural logics.
I In fact, we prove admissibility of a whole class of rules in a

procedure of polynomial-time complexity.

We put it to use to generalise decomposition.



General decomposition
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General decomposition



General decomposition

I This reduction shape can be observed frequently.

I It can be generalised to provide reductions for all contractive
rules.

I We can characterise those systems for which these reduction
rules are sound.



General decomposition

Theorem (Pending approval)

We can decompose derivations into an introductory phase followed
by a contractive phase.

(In a certain class of systems including CL and MALL)



General decomposition



Cycle elimination

Theorem
Given a derivation with a cycle, there exists a cycle-free derivation
with the same premiss and conclusion.

(In CL and MALL.)

m

−→
m



Conclusions

I We observe a striking phenomenon: only one rule shape is
enough to describe many different systems.

I We are able to observe that complexity comes from
decomposition rather than from splitting.

I We wonder what role cycles play as a compression mechanism.

I We would like to use it as a stepping stone towards a
geometrical formalism.
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