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Untangling cut-elimination

I In traditional cut-elimination procedures in Gentzen theory, we
eliminate cut instances from proofs by moving upwards
instances of the mix rule.

` mA, Γ ` nĀ,∆

` Γ,∆

I The presence of contraction makes for a jump to a higher
complexity class.

I Can we untangle cut and contraction and normalise on each of
them separately and in a natural way?
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Untangling cut- elimination

I Decomposition is the normalisation of contractions by
permuting them to the bottom of proofs. It can increase the
size of proofs exponentially.

I Splitting deals with cut-elimination in contraction-free systems.
It does not generate meaningful complexity.



What is Deep Inference?

It’s the free composition of derivations with the same connectives as
formulae.
If

φ =
A

B
and ψ =

C

D

are two derivations, then

(φ ∨ ψ) =
A

B
∨
C

D
and (φ ∧ ψ) =

A

B
∧
C

D

are valid derivations.



Why Deep Inference?

I To obtain new notions of normalisation in addition to cut
elimination [7, 6].

I To get proof systems whose inference rules are local and highly
regular [9].

I To express logics that cannot be expressed in Gentzen [11, 2].

I To shorten analytic proofs by exponential factors compared to
Gentzen [4, 5].

I To inspire a new generation of proof nets and semantics of
proofs [10].
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Some proof systems
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Figure: System SKS [3]



Some proof systems
1
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⊥
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Figure: System SLLS [9]



Splitting

I Generalisation of a common technique employed for
cut-elimination in deep inference systems.

I We split the proof in different pieces, and put them back
together in such a way that we avoid the cut.

I This type of argument has been used to prove the admissibility
of rules other than the atomic cut.



Splitting

I We find all the subproofs that are independent from each other
above the multiplicative ‘cut’ connective. We will show that we
can put them back together like a puzzle and obtain a proof
with the same conclusion but without the cuts.



Splitting

I We find all the subproofs that are independent from each other
above the multiplicative ‘cut’ connective. We will show that we
can put them back together like a puzzle and obtain a proof
with the same conclusion but without the cuts.



Splitting

I We find all the subproofs that are independent from each other
above the multiplicative ‘cut’ connective. We will show that we
can put them back together like a puzzle and obtain a proof
with the same conclusion but without the cuts.



Splitting

I We find all the subproofs that are independent from each other
above the multiplicative ‘cut’ connective. We will show that we
can put them back together like a puzzle and obtain a proof
with the same conclusion but without the cuts.



Splitting

Definition
A system S is splittable if:

1. There are dual distinguished connectives × with unit 1 and +
with unit 0.

2. S is uniquely composed of the rules

1
ai↓

a + ā
and

a× ā
ai↑

0
,

together with rules

(A + B) α (C + D)
α↓

(A α C ) + (B qα D)
and

(A α̂ B)× (C α D)
α↑

(A× C ) α (B × D)

for every connective α.

3. For every unit u, u + ū = 1.

4. For every connective α, 1 α̂ 1 = 1 .



Splitting

I This defines a whole class of substructural logics.

I It includes logics that support self-dual non commutative
connectives, such as BV.

I It includes MLL.

I It includes the ‘splittable fragment’ of CL and MALL, i.e. the
one made-up of all the rules that do not stem from atomic
contraction.



Splitting

Theorem

Let S be a splittable system. For every proof
φ S

A
there is a proof

ψ S\{ai↑,α↑}
A

linear on the size of φ, and where ψ can be obtained

from φ in a procedure of polynomial-time complexity.



Decomposition

I In several deep inference systems, we know that we can
permute atomic contractions to the bottom of proofs through
local reductions.

I We want to permute general contractions

A ∨ A

A
.

I It is essential to move away from the sequent calculus: it is
always possible to build a valid sequent for which there is no
sequent calculus proof where all the contractions are confined
to the bottom [1].
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Decomposition

I Reduction rule 1:

(A1 ∨ A2) ∨ (A1 ∨ A2)

A1 ∨ A2

∧ C

s
(A1 ∧ C ) ∨ A2

−→

((A1 ∨ A2) ∨ (A1 ∨ A2)) ∧
C

(C ∧ C )
s

(A1 ∨ A2) ∧ C
s

(A1 ∧ C ) ∨ A2

∨
(A1 ∨ A2) ∧ C

s
(A1 ∧ C ) ∨ A2

(A1 ∧ C ) ∨ A2

I We create a cocontraction: locality is indispensable.



Decomposition

I Reduction rule 1:

a ∨ a

a
∧ ā

ai↑
f

−→
(a ∨ a) ∧

ā

(ā ∧ ā)
s

a ∧ ā
ai↑

f
∨

a ∧ ā
ai↑

f

I This is how we can permute contractions past cuts.



Decomposition

I Reduction rule 2:

A ∨ A

A

A ∧ A

−→
A

(A ∧ A)
∨

A

(A ∧ A)

A ∧ A

I This can cause an exponential explosion in the size of the proof.



Decomposition

Definition
A system SD is decomposable if:

1. There are dual distinguished relations t with unit w and u
with unit w̄ .

2. SD is composed of a splittable system S with, together with
the rules

A t A

A
and

A

A u A
,

w
aw↓

a
and

a
aw↑

w̄
.

3. For every unit u, u t u = u = u u u.

4. For every connective α, w α w = w and w̄ α w̄ = w̄ .



Decomposition

I The definition includes CL and MALL.

I It will be expanded to include exponentials.



Decomposition

Theorem
In a decomposable system, there is a reduction strategy so that
every proof can be rewritten as a proof where all instances of
contraction are at the bottom of the proof (and there are no
instances of cocontraction).



Conclusions

I We can control complexity by following atoms.

I We give a uniform treatment for many existing logics

I We can use these results to design systems with guaranteed
mosular cut-elimination.
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