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Proof theorists have long been interested in the study of normalisation of proofs. From cut-elimination
to proof identity, finding a normal form for proofs is a valuable research goal that includes questions
such as which properties we would like for the normal form, and what the size of the normal form is
in relation to the original proof. However, to study normalisation procedures with some generality is
very difficult: cut-elimination procedures for example are highly sensitive to variations on the form and
structure of the rules of a system, where a single change in one of the rules or the addition of another
warrant the need for a full new proof of cut-elimination in a new system. In this thesis we unveil a
common structure behind proof systems that will allow us to generalise and understand normalisation
in a simpler and more effective way. We provide a new approach within the setting of deep inference,
which we call subatomic because we look ’inside the atoms’. It allows us to present a wide variety of
propositional proof systems in such a way that every rule is an instance of a single simple linear rule
scheme. We exploit this generality to study normalisation procedures and their complexity, and in
particular to unveil the role played by the interactions between the rules.

Gentzen’s proofs of cut-elimination [9] for classical and intuitionistic logic were only the first instance
of a type of argument that has been long studied since. From that breakthrough, Gentzen-style cut
elimination proofs abound in the literature, exploring on a system-by-system basis how to permute the
cut-rules towards the premiss of a proof. The specificity needed for these cut-elimination arguments
requires tricky case by case analyses, making it difficult to understand how cut-elimination works.
Indeed, when designing a new proof system a complex trial and error phase is necessary to obtain cut
admissibility. The fact that simple variations of a rule have so much influence on these arguments is the
first hint that cut-elimination is in fact a combinatorial phenomenon, hinging mostly on the shape and
interaction between the rules of a system.

In particular, in traditional Gentzen-style cut-elimination procedures cut instances are eliminated
from proofs by moving upwards instances of the mixz rule [10, 8]. This rule conflates one instance of cut
and several instances of contraction and therefore by using this technique we are in fact observing two
different interactions between rules: the interactions of the cut with other rules, and the interactions
of contractions with other rules. This phenomenon becomes more apparent when one considers the
complexity of cut-elimination in different systems: in purely linear systems such as multiplicative linear
logic the procedure does not change the size of proofs significantly, whereas as soon as contractions are
introduced the size of proofs can grow exponentially or more.

In what follows we aim to move towards a generalised modular normalisation theory where the
different interactions between rules are dealt with separately, providing a tighter control over complexity
creation. We provide a generalised procedure for cut-elimination in a generalisation of linear systems,
named splitting. Further, we present general proof rewriting rules together with sufficient conditions
for a system to be decomposable into phases containing only atomic contractions/cocontractions and a
linear phase. In this way we show that this type of decomposition result holds for example for both
classical logic and multiplicative additive linear logic because of shared properties in the shape of their
rules. Last, we use the general reduction rules introduced in this thesis to design a local procedure to
remove cycles, effectively proving the independence of decomposition and cut-elimination.

1 Subatomic logic

To reduce rules to a single shape, we will work in the setting of deep inference [13, 21]. In deep inference
proofs can be composed by the logical connectives that are used to compose formulae [14]. For example,
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are two valid proofs with premisses A A C and AV C and conclusions B A D and BV D respectively. In
deep inference, rules can be applied at any depth inside a formula and as a result every contraction and
cut instance can be locally transformed into their atomic variants by a local procedure of polynomial-size
complexity [5, 20, 4].

This provides a surprising regularity in the inference rule schemes: it can be observed that in most
deep inference systems all rules besides the atomic ones can be expressed as

(Aa B) 8 (Cd D)
(ABC)a (BB D) '

where A, B, C, D are formulae and «, 3, o', 8’ are connectives. We call this rule shape a medial shape.
Following this discovery, we will achieve an even greater regularity on the inference rules by looking
even further, inside the atoms.

The main idea of this work is to consider atoms as self-dual non-commutative relations. Subatomic
formulae are built by freely composing constants by connectives and atoms. For example, A =
((fat) Vt) A (tbf) is a subatomic formula for classical logic. The intuitive idea is to interpret f a t as a
positive occurrence of the atom a, and t a f as a negative occurrence of the same atom, denoted by a.
We can therefore interpret A as (a Vt) Ab.

We can view subatomic formulae as a superposition of truth values. For example, f at is the
superposition of the two possible assignments for the atom a, and taf is the superposition of the possible
assignments for a: if we read the value on the left of the atom we assign f to a and t to a, and if we read
the one on the right we assign t to a and f to a.

We give a broad definition of what relations are, not assuming any logical characteristics or properties
such as commutativity or associativity. We therefore encompass logics with both commutative and
non-commutative, associative and non-associative, dual and-self dual relations. This feature deserves to
be highlighted since expressing self-dual non-commutative connectives into proof systems that enjoy
cut-elimination is a challenge in Gentzen-style sequent calculi: it is impossible to have a complete
analytic system with a self-dual non-commutative relation [21].

Definition 1. Let 9% be a denumerable set of constants whose elements are denoted by w, v, w,.... Let
% be a denumerable partially ordered set of connectives whose elements are denoted by «, 3, v, .. ..
The set F of subatomic formulae (or SA formulae) contains terms defined by the grammar

Fo=U|FRF

Formulae are denoted by A, B, C, . ...
A (formula) context K{ }---{} is a formula where some subformulae are substituted by holes;
K{A}---{A,} denotes a formula where the n holes in K{ }---{ } have been filled with Ay, ..., A,.

In this summary we will only use classical logic as an example. Further examples featuring mul-
tiplicative linear logic, multiplicative additive linear logic, BV (showcasing a logic with a self-dual
non-commutative connective) and SKV (which features a modality) can be found in the thesis.

Given a propositional logic with certain connectives and constants, its subatomic counterpart is
therefore composed of an extended language of formulae, made up from the same connectives and
atoms. We can translate subatomic formulae constructed in this natural way into the ‘usual’ formulae
by defining a simple interpretation map. Further, we can easily endow subatomic formulae with an
equational theory and an involutive negation, matching that of the ‘usual’ formulae.

Definition 2. Let 9 be the set of formulae of a propositional logic L , and let F be the set of subatomic
formulae with constants % and connectives %&. A surjective partial function I : ¥ — 9 is called
interpretation map. The domain of definition of I is the set of interpretable formulae and is denoted by
Fi. If F =1(A), we say that F is the interpretation of A, and that A is a representation of F.



The useful properties of subatomic formulae become apparent when we extend the principle to atomic
inference rules. Let us consider, for example, the usual contraction rule for an atom. We could obtain
this rule subatomically by reading fat as a and taf as a, as follows:

(fat)V(fat) aVa (taf)V(taf) ava
we read as and we read as
(fvfla(tVvi) a (tVit)a(tVi) a
These rules are therefore generated by the linear scheme

(AaB)V (CaD)

, where A, B,C, D are formulae.
(AvC)a(BVD)

The non-linearity of the contraction rule has been pushed from the atoms to the units.
Similarly, we can consider the atomic identity rule. It can be obtained subatomically as follows:
(fat)V(taf) t

as .
(fvt)a(tVvf) aVva
Similarly to the contraction rule, it is generated by the linear scheme

we read

(AVB)a(CVD)
(AaC)V (BaD)

, where A, B,C, D are formulae.

It is quite plain to see that both the subatomic contraction rule and the subatomic introduction rule
have the same medial shape, typical of logical rules in deep inference. We have therefore uncovered
an underlying structure behind the shape of inference rules, that we will exploit to obtain a general
characterisation of rules.

To make use of the general characterisation, we will impose some restrictions on «, v, 8,v. These
conditions strike a balance between being general enough to encompass a wide variety of logics and
being explicit enough to enable us to generalise procedure such as cut-elimination and decomposition.
To do so, we exploit the dualities present in the inference rules, and we introduce a notion of polarity
in the pairs of dual relations. This notion of polarity can be reminiscent of the polarities assigned to
connectives in linear logic [11], but the idea behind it is rather to assign which of the relations in the
pair is ‘stronger’ than the other. Intuitively, it loosely corresponds to assigning which relation of the
pair will imply the other. For example, in classical logic A A B implies A V B, and thus we will assign A
to be strong and V to be weak.

Definition 3. For each pair of connectives {«, @}, we give a polarity assignment: we call one connective
of the pair strong and the other one weak.

If « is strong and @ is weak, we will write «
both strong and weak.

M M

=a" =a and a=a"=a. Self-dual connectives are
Definition 4. A subatomic proof systemn SA with set of formulae ¥ is
(AB B)a(CpBD)

(AaC) B (Ba™ D)

e a collection of inference rules of the shape a, B€ R, called down-rules,

. . (ABB)a(CpY D)
e a collection of inference rules of the shape , a, B R, called up-rules,
(AaC) B (BaD,)

A
e a collection of rules = 3 and = —, for every axiom A = B of the equational theory = on %, called

S|

equality rules.

We can straightforwardly build deep inference derivations as is usual in the literature, by vertical
composition through an inference rule and horizontal composition by logical relations, and the inter-
pretation map is easily extended from formulae to derivations. The notion of proof is generalised as
well.

Definition 5. Let 1 € 9 be a distinguished constant. A proof of A is a derivation ¢ whose premiss is
1. We denote proofs by ¢£.
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Figure 1: Subatomic system SAKS for classical logic

2 Splitting

There are many different cut-elimination techniques in the deep inference literature [12, 3, 2, 20, 15],
exploiting different aspects of the proof systems they work on. In this assortment, a particular
methodology does however stand out for its generality: cut-elimination via splitting [13] can be achieved
in the deep inference systems for linear logic [18], multiplicative exponential linear logic [20], the mixed
commutative/non-commutative logic BV [13] and its extension with linear exponentials NEL [15], and
classical predicate logic [3]. The generality of this procedure points towards the fact that it exploits
some properties that are common to all these systems.

Splitting is based on a simple idea: to show that an atomic cut involving a and a is admissible, we
trace a and a to the top of the proof to find two independent subproofs, the premiss of one containing
the dual of a and the other one containing the dual of a. In this way we obtain two independent ‘pieces’
that we can rearrange to get a new cut-free proof.
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Proofs of cut-elimination by splitting therefore rely on two main properties of a proof system: the
dualities present in it to ensure that each of the independent subproofs contains the dual of an atom
involved in the cut, and the shape of the linear rules ensuring that the two proofs remain independent
above the cut. It is precisely a formal characterisation of these properties that we will provide, enabling
us to understand why they are enough to guarantee cut-elimination.

To trace a connective through the proof from the bottom to the top, we need its scope to widen.
Accordingly, we will consider systems where the shape of the rules ensures the widening of the scope. In
what follows, we will characterise splittable systems, i.e., systems with sufficient conditions to ensure
cut-elimination through a splitting procedure.

Definition 6. A system SAY is splittable if:

1. There is a distinguished associative and commutative strong connective x with unit 1 and dual +
with unit 0,

2. SA is uniquely composed of down-rules of the form

(A+B)a (C+ D)
(AaC)+ (B a™ D)

al R

for every connective o € .



3. There is a constant assignment u + u = 1 for every unit v € U,

4. 1a™ 1 =1 for every a € R.

The proof of the splitting result is done in two steps for ease of reading: shallow splitting and context
reduction, just as is standard in the literature. As noted in [13] and in [19], the main difficulty of splitting
is finding the right induction measure for every system. In the literature, each splitting theorem for
each proof system uses a different induction measure tailored specifically for it. By providing a general
splitting theorem, we not only give a formal definition of what a splitting theorem is, but also give a
new one-size-fits-all induction measure based on the length of the proof that works for every splittable
system, taking the search for an induction measure out of the process for designing a proof system.

Theorem 7 (Shallow Splitting). If SAY is splittable, for every formulae A, B, C, for every connective
o # +, for every proof

¢ lsa*
(AaB)+C
there exist formulae Q1, Q2 and derivations
Q1@ Q2 B} |
llsat ZlnSA and B(MHSA
C + Ql + QQ

Theorem 8 (Context Reduction). Let SAY be a splittable system. For any formula A and for any

1
context S{ }, given a proof S?{HE}A , there exist a formula K, a provable context H{ } and derivations

H{{}+ K}
x [Isa*

S}

As a corollary of shallow splitting and context reduction we can show the admissibility of a class of
up-rules. The main idea is that through context reduction followed by shallow splitting we can separate
a proof into ‘building blocks’ that are independently provable. We then combine these building blocks
differently to obtain a new proof with the same conclusion.

(Aa B) x (C o™ D)
(AxC)a(BxD)

1
AC—E SIA( and

Definition 9. Rules of the form at are cuts.

Corollary 10 (Admissibility of cuts). Let SA be a splittable proof system.
For any formulae A, B,C, D, any context S, any connective a# +, given a proof

¢’ Tsa+
¢ES{QT(AQB)X(CQNID)} ,
(AxC)a (BxD)

there is a proof
n [ sAt
S{(AxC)a (BxD)} ’
i.e., cuts are admissible.

All of the theorems above preserve interpretability, i.e., if a subatomic proof is interpretable into an
‘ordinary’ proof, then so is its cut-free form obtained via splitting.

Last, we have shown that splitting hinges only on the shape of rules and on dualities. In the general
splitting theorem that we presented we considered only binary relations, but it will be the focus of
future research to extend this result to include relations of different arities: splitting can be applied to
different types of unary operators, as is shown by the splitting theorems for exponentials in [19] or for a
self-dual binder in [17]. In the thesis we show a starting point in the direction of such a generalisation,
by extending the general procedure to a system with a self-dual modality. The fact that it is possible
to do so shows the robustness of the general splitting methodology: it is based on properties that are
present in systems with very different expressiveness and therefore it can be expanded to include an
extremely wide variety of relations as long as they are introduced by rules of non-contractive shape.



3 Decomposition

Splitting allows us to understand the interactions of the cut with linear rules, but how about contractions?
It is known that we can decompose classical logic [16] and multiplicative additive linear logic [18] proofs
into a linear phase and a phase made-up only of contractions. We study this phenomenon, providing
general rewriting rules that encompass the reductions presented in both systems. We thus show that
both decomposition results are a consequence of precisely the same properties.

Additionally, it has long been conjectured [5] that it is possible to achieve a further decomposition
of these systems, permuting not only the atomic contraction but a whole family of contractive rules
towards the bottom of a derivation. The generalised rewriting rules that we present allow us to permute
contractive rules with linear rules, including cuts. The regularity provided by subatomic systems is a
big simplification for the study of these interactions: by having a single shape we only have to consider
two non-trivial permutation cases.

The first step in the generalisation is to characterise the contractions, the family of rules that will be
permuted. Unsurprisingly, the rules that we will be able to permute downwards/upwards in a derivation
correspond to the rules involved in making contraction atomic. We will call them contractions as well.

We define v-contractive systems, which correspond to those systems where we can recover general
contractions

Av A

A

Definition 11. Let v be a distinguished relation with unit v, and 7 its dual with unit A. A v-contractive
system SA is a subatomic proof system where:

e For every relation « there is a down rule of the form

(AaB)v (CaD)
(AvC)a (Bv D) ’

ac

that we call contraction for a and its dual up rule that we call cocontraction for @.

e For every constant u € % there are equalities of the form v v v = v and w7 4 = u. We call the
uvu U
equality rules = the contraction equality rule for u and = —— the cocontraction equality
U (T7E]

rule for u.

% U
e For every constant u € U, w— and its dual @ " are derivable in SA. We call these unitary
U

instances of (co)contraction rules weakening and coweakening respectively.
e For every relation « there are equalities V o V = V and AaA=A.

Complexity is created by the duplication of atomic contractions when they are permuted through
other rules [16]. It is our goal to understand this phenomenon in the best possible generality, i.e. to
keep track of the creation and duplication of atoms when any contraction rule is permuted downwards
in a derivation. However, when permuting contraction rules we may create an unbounded number of
other contractive and cocontractive rules.

By observing the subatomic form of known rewriting rules that permute atomic contractions
downwards in derivations, a novel way of controlling this phenomenon arises: we will show that it is
possible to move ‘blocks’ of nested contraction rules together, in such a way that we are no longer
concerned by the number of (co)contraction rules created by the procedure.



Consider this reduction, corresponding to permuting an atomic contraction through an atomic cut:

t f
(Fat)v (Fat) A [tAt] FAF

ac

taf) A (taf

(fayv(fay " (taf)A(taf)
fvfl [tvt]|A(taf fat)A(taf fat)A(taf
. (taf) | (Fayafeaf) | (Far)A(taf)
f t (fAt)a(tAf) (fAt)a(tAf)

GT ac
(fAt)a (tAT) (fAt)V(FAL) (tAf)V(tAT)
Ac Ac
fvf| [tVt |a tvt| |[fVf
f t t f

In this reduction, we move a block of nested contractions (in red) by creating another block of nested
contractions lower in the proof and a block of nested cocontractions (in red as well). The structure that
we are therefore interested in studying is that of recursive nestings of contraction rules. For convenience
and readability, we will represent these nestings in the form of a hyper-rule named merge contraction,
which will be defined recursively in order to capture the nested structure.

Definition 12. In a v-contractive system SA, a nesting of contractions is an SA derivation defined
recursively as follows:

e A formula A v B is a nesting of contractions ;
e A contraction equality rule is a nesting of contractions ;

o A derivation
(AaB)v (CaD)
AvC BvD

ol o gl
R S

C

is a nesting of contractions if ¢ is a contraction and ¢; and ¢- are nestings of contractions.
Definition 13. A v-merge of two formulae is defined as follows:
e Av Bis av-merge of A and B that we call a trivial merge;
e u is a v-merge of u and u, where u € 9 is a constant;

e () a Uy is a v-merge of Ay o As and By a By for a € R if C is a v-merge of A; and By and Cs
is a v-merge of Ay and Bs. In this case we say that « is the main relation of the merge.

If C is a v-merge of A and B, by an abuse of language we will sometimes refer to the triple (A, B, C)
as a v-merge.
v-merges of two formulae are defined dually.

It can be easily seen that each nesting of contractions corresponds to a v-merge, and each v-merge
corresponds to a nesting of contractions.

Av B
Proposition 14. Given a nesting of contractions ¢| , C is a v-merge of A and B.

C

Av B
Proposition 15. If C is a v-merge of A and B, there is a nesting of contractions ||
C

The duals of the above propositions clearly hold for T-contractions and nestings of cocontractions.
Given the above characterisation of nestings as derivations whose conclusion is a v-merge of its premiss,
for ease of notation we will represent nestings as a hyper-rule, that we call merge contraction.



Av B
Definition 16. mcl

is a merge contraction if C' is a non-trivial v-merge of A and B.

C

v

mct is a merge cocontraction if C' is a non-trivial 7-merge of A and B.

For each nesting, we have a merge contraction, and for each merge contraction we have a nesting.
We will permute nestings downwards in a derivation by creating other nestings lower in the derivation
by, equivalently, permuting merge contractions downwards by creating other merge contractions lower in
the derivation.

The main property allowing us to permute merge contractions through other rules is the given in the
following proposition:

A B
Proposition 17. If C' is a v-merge of A and B, we can define projections =4 || {=,w} and =z || {=,w}
C C

associated to the merge.

With the projections associated to a merge as a tool, we will now show reduction rules allowing us
to permute merge (co)contractions downwards (upwards) in a proof.

Definition 18 (Reduction rule s). We define the following class of reduction rules:

A

Av B

oM
"N

} —

mcl

mall

sl

el

C{N}

where 14 and wp are the projections associated to the merge (A, B, C).

Definition 19 (Reduction rule t). If the rule

following family of rewriting rules:

(A1 a A2) v (B1 a Ba)
CaD

mcl

B(Ed F)

(CBE)a(Dp F)

(Av B) B (C7 D)

(ABC)v (BB D)

(A1 @ A2) v (B1 a B2)) B

is derivable in SA we define the

Ed F
mct

(Ed' F)T(Ed F)

(AlaAz)ﬁ(Ea' F)

(BiaB)B(Ed F)

"(ALBE)a (A B F)

Y’ (Bi BE)a (B: B F)

mcl

(CBE)a(Dp F)
where C' is a v-merge of A; and By, and D is a v-merge of Ay and Bs.

In fact, the rewriting systems for classical logic [16] and for multiplicative additive linear logic [18]
that allow us to permute atomic (co)contractions through other rules are particular instances of the
generalised rewriting rules defined above. We have therefore shown that these results are a consequence
of a wider phenomenon: both rewriting systems exploit the shape of atomic contractions to be able
to permute them with other rules. Furthermore, the termination of these rewriting systems holds for
the subatomic versions too: identically to the atomic versions, the subatomic rewriting systems will
terminate in the absence of a particular construction, called ai-cycle. We will rigorously define and
tackle ai-cycles in the next section.

Theorem 20. Rewriting system C' for SAKS (Figure 1) is given by the reduction rules s and t where
the merge contraction being permuted has main relation a, and by the dual reductions. C' is terminating
on the set of ai-cycle-free derivations.

Furthermore, by being able to permute generic contractions together, we advance towards proving a
full decomposition theorem for classical logic and multiplicative additive linear logic, by being able to
confine all contraction rules to the bottom of a proof.



Conjecture 21. We define rewriting system D for SAKS as the system given by the general reductions
s, t, and the dual reductions for merge cocontractions. System D is weakly normalising.

4 Cycle elimination

Atomic contractions and atomic cocontractions can be permuted downwards/upwards in a classical logic
derivation only in the absence of a particular construction called ai-cycle [16]. Cycles are created when
two atom occurrences created in the same identity rule are eliminated by the same cut rule. We call
these atoms occurrences the edges of a cycle. Identically, this result holds for multiplicative additive
linear logic [18].

Cycles are straightforwardly removed by cut-elimination. Our goal in this chapter however is to take
advantage of the reductions presented in the previous chapter to show that we can remove ai-cycles
without recurring to cut-elimination, therefore proving the independence of the decomposition and the
cut-elimination procedures.

Furthermore, the phenomenon of cycles has been studied in the sequent calculus, where it has been
shown that it is possible to remove them through a procedure of quadratic-time complexity [7]. With
the procedure we present we hope to be able to study the complexity cost of cycle-elimination in deep
inference in future research.

In the sequent calculus, cycles can only occur due to the presence of contractions [6]. Likewise, in
our case they exist due to the presence of contraction rules. For an ai-cycle to occur in classical logic,
two atom occurrences coming from the same introduction rule and therefore related by V at the top of
the flow have to be connected by A at the bottom of the flow to be eliminated by the same cut rule.
Therefore, an instance of a rule that changes the relation between formulae from V to A needs to occur,
and it must contain the atoms involved in the cycle. The only rule that does so in subatomic system
SAKS for classical logic (Figure 1) is the contraction rule m. Likewise, in multiplicative additive linear
logic cycles can only occur if there is a contraction rule between the introduction and the cut of the
cycle. We call these instances of contraction rules critical.

Definition 22. Let ¢ be a derivation containing a cycle. The critical medial for this cycle is the lowest

instance of a rule
(A{a} AB) Vv (C A D{a})

(A{a} vV C) A (BV D{a})

in ¢ where the occurrences of a and a are the edes of the cycle.
A critical merge contraction is a maximal merge contraction that contains a critical medial.

m

This novel idea of removing cycles by starting from the ‘critical medial’ has in fact yielded two
methods for the elimination of cycles: the one presented in what follows, and the one presented in [1],
that will both be studied to ascertain the complexity cost of each procedure.

The intuition behind our procedure is simple: by using the rewriting rules defined in the previous
section we can permute a critical contraction rules downward until it is below the cut of its cycle. In this
process derivations are significantly altered: cycles are removed and edges are bifurcated. Termination
of the procedure is easy to check: we show that when permuting critical contractions downwards we do
not create any additional critical contractions.

Theorem 23. Let ¢ be a derivation with n critical merge contractions. Then there exists a derivation
1 with the same premiss and conclusion with n — 1 critical merge contractions.

To eliminate all cycles from a derivation, one simply performs the procedure n times, once for each
critical merge contraction.

Corollary 24. Given a derivation ¢, there exists a derivation v with the same premiss and conclusion
and without cycles.
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